Detecting and correcting sensor drifts in long-term weather data.

نویسندگان

  • Georg von Arx
  • Matthias Dobbertin
  • Martine Rebetez
چکیده

Quality control of long-term monitoring data of thousands and millions of individual records as present in meteorological data is cumbersome. In such data series, sensor drifts, stalled values, and scale shifts may occur and potentially result in flawed conclusions if not noticed and handled properly. However, there is no established standard procedure to perform quality control of high-frequency meteorological data. In this paper, we outline a procedure to remove sensor drift in high-frequency data series using the example of 15-year-long sets of hourly relative humidity (RH) data from 28 stations subdivided into 202 individual sensor operation periods. The procedure involves basic quality control, relative homogeneity testing, and drift removal. Significant sensor drifts were observed in 40.6 % of all sensor operation periods. The drifts varied between data series and depended in a complex, usually inconsistent way on absolute RH values; within single series for instance, a drift could be negative in the lower RH range and positive in the upper RH range. Detrending changed RH values by, on average, 1.96 %. For one fifth of the detrended data, adjustments were 2.75 % and more of the measured value, and in one tenth 4.75 % and more. Overall, drifts were strongest for RH values close to 100 %. The detrending procedure proved to effectively remove sensor drifts. The principles of the procedure also apply to other meteorological parameters and more generally to any time series of data for which comparable reference data are available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of calibration drifts in spaceborne microwave radiometers using a vicarious cold reference

The coldest possible brightness temperatures observed by a downward-looking microwave radiometer from space are often produced by calm oceans under cloud-free skies and very low humidity. This set of conditions tends to occur with sufficient regularity that an orbiting radiometer will accumulate a useful number of observations within a period of a few days to weeks. Histograms of the radiometer...

متن کامل

Long-Term Peak Demand Forecasting by Using Radial Basis Function Neural Networks

Prediction of peak loads in Iran up to year 2011 is discussed using the Radial Basis Function Networks (RBFNs). In this study, total system load forecast reflecting the current and future trends is carried out for global grid of Iran. Predictions were done for target years 2007 to 2011 respectively. Unlike short-term load forecasting, long-term load forecasting is mainly affected by economy...

متن کامل

آموزه‌هایی از معماری اقلیمی گذرهای کاشان، تحقیق میدانی در بافت تاریخی شهر

Traditional architecture of the historical cities in Iran contains valuable lessons related to architecture and urban design. A considerable group of these strategies are those that are used in outdoor urban spaces in desert cities providing a safe and sustainable microclimate to live in the harsh desert for more than thousands of years. This article will decode these strategies by doing field ...

متن کامل

Detecting long-term drift in reagent lots.

BACKGROUND Between-reagent lot verification is a routine laboratory exercise in which a set of samples is tested in parallel with an existing reagent lot and a candidate reagent lot (before the candidate lot is committed to test patient samples). The exercise aims to verify and maintain consistency in the analytical performance of a test. We examined the limitations of a routine between-reagent...

متن کامل

Outlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis

Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental monitoring and assessment

دوره 185 6  شماره 

صفحات  -

تاریخ انتشار 2013